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SIGNIFICANCE AND EXPLANATION

The quadratic programming problem is the following: Given n x1

vectors cpal,...,aM, numbers bi,...,bm and an n x n matrix C, find

an n x 1 vector x which minimizes the quadratic function

c1 + I. x Cx
2

subject to the inequality constraints

aix 4 i i 1,.,

If C is the n x n zero matrix, then the quadratic programming problem

reduces to the linear programming problem.

In recent years quadratic programming has become an important tool in

optimization. It has wide applications in areas such as statistics,

* structural engineering, economics and portfolio analysis.

In applications the following situation occurs frequently: A quadratic

programming problem has been formulated and an optimal solution x has been

obtained. Then it is discovered that additional constraints are required

which render the previous optimal solution x unfeasible. The contribution

of this work is an algorithm which solves the new problem in an efficient way

by taking advantage of the fact that an optimal solution x to the "wrong"

problem is known.

The responsibility for the wording and views expressed in this descriptive
sunmmary lies with ?4RC, and not with the author of this report.
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A DUAL QUADRATIC PROGRAMMING ALGORITM

Klaus Ritter

1) Introduction

In mathematical programming the relationship between a primal minimization problem

and the associated dual maximization problem plays an important role. In particular, if

- . an optimal solution to either problem is known, an optimal solution to the other problem

can easily be obtained. Most algorithms for solving the primal problem generate a

* . sequence of primal feasible solutions with decreasing objective function values. on the

other hand a dual method determines a sequence of dual feasible solutions with increasing

e, values of the primal objective function. only the optimal solution is primal feasible.

* For quadratic programming problems such a dual method is developed in this paper. In

the next section we introduce some definitions and preliminary results. Section 3

contains an outline of the algorithm and its properties. In the final section a detailed

* description of the algorithm is given.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2) Formulation of the Problem and Basic Results

We consider the problem

min{c'x + I x'Cx Ax 4 b} , (2.1)

where c and x are n-dimensional vectors, b is an m-dimensional vector and A is an

(m,n)-matrix. Thus n denotes the number of variables and m denotes the number of

inequality constraints.

Throughout the paper we assume that the (n,n)-matrix C is symmetric and positive

definite. This implies that the objective function c'x +-- x'Cx is strictly convex.
2

Therefore, (2.1) has a unique optimal solution if the set

R {x I Ax 4 b)

of feasible solutions is non-empty. With

Q(x) - c'x + I x'Cx, A' (aI .... am), b' (bl,...,bm)

we can write (2.1) in the equivalent form

min{Q(x) I ax 4 bi,  i = 1,...,m}.

To avoid some technical difficulties we assume that, for each x e R, the gradients of

the constraints active at x are linearly independent.

Problem (2.1) is sometimes called the primal problem and associated with the

following maximization problem which is said to be the dual problem

max 2-b'u x'Cx I Cx + A'u - -c, u ; 01 (2.2)222

Here u is an m-dimensional vector. Thus the dual problem has n + m variables. The

. main results connecting the two problems are the duality theorems which assert that if x

is an optimal solution to the primal problem, then there is U such that the pair (x,u)

is an optimal solution to the dual problem and, vice versa if (x,u) is an optimal

solution to the dual problem then x is an optimal solution to the primal problem (see

-. q. [2)).

*: If Q(x) is convex it is well-known (see e.g. (2]) that the following optimality

conditions are necessary and sufficient for an optimal solution of (2.1).

-2-
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Optimality conditions

is an optimal solution to (2.1) if and only if there is u (ulf...,um)' such

that

i) Cx + A'u - -C, U ? 0

ii) Ax b,

iii) uila - hi) n 0, i - 1,...,m

An x is said to be a quasi-stationary point if there is some u such that (x,u)

satisfies the optimality conditions with the possible exception of the non-negativity

condition u > 0.

Let x be a given stationary point and assume that

a-x - bi, i - 1...,p, aix < b i - p + 1,...,m

Then

-c-Cx= C uiai

and for every

x e {x aix = hi, i =

we have

Q(x) Q(x) - (C + Cx)'(x - x) + x X-)C(X -X)

Q(;) + -(; - X)'C(x - x)

This shows that x is the unique optimal solution to the problem

min{Q(x) I aix - bi, i = ....p •

* Therefore, problem (2.1) has only finitely many quasi-stationary points and every

algorithm which generates a sequence of quasi-stationary points x ,x2 ... with the

property

U(x j+I ) < Q(xj)

will terminate with the optimal solution to (2.1) after a finite number of iterations.

-3-
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It does not seem to be practical to construct algorithms which obtain a new quasi-

stationary point at every iteration. However, a typical primal method for solving (2.1)

will generate a sequence of feasible solutions xj with the following properties.

i) Every subsequence of n + I consecutive points xv,xu+,...,xv+n contains at

least one quasi-stationary point.

ii) If Xj
1  

and xj2  are two quasi-stationary points with J< J2, then

Q(xj2) < Q(xJ.)

An example of such an algorithm is given in [I].

An x is said to be a pseudo-stationary point if there is some u such that (x,u)

satisfies the optimality conditions with the possible exception of some of the primal

feasibility conditions aix 4 bi. In practice such a point is obtained if, after solving

(2.1), it is discovered that more constraints have to be added which render the present

optimal solution x infeasible.

Let x be a pseudo-stationary point and assume that

aix = bi, i = I,...,p, a'x # bi, i p + 1,....

Then

p-C - Cx u i ua i ,  u i ;P a, i 1,.,.
i=I1

Thus it follows from the optimality conditions that x is the unique optimal solution to

the problem

min(Q(x) ax 4 bi, i = 1,...p} • (2.3)

This shows that (2.1) has only finitely many pseudo-stationary points.

Clearly, a pseudo-stationary point is the optimal solution to (2.1) if and only if it

is feasible. Let x be the optimal solution to (2.1) and let x. be any pseudo-

stationary point. Then it follows from (2.3) that either x = x or Q(x) > Q(x.). Thus
°- 2

any algorithm which generates a sequence of pseudo-stationary points x1 ,x2,.., with

(x J+1 ) > Q(x )

.

-b-4-
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will terminate after a finite number of iterations. As in the case of primal algorithms

it is not practical to insist that the algorithm obtains a new pseudo-stationary point at

every iteration. Instead, we will develop an algorithm which generates a sequence

{xjruj} of dual feasible solutions with the following properties.

i) every subsequence {x ,xV+1 ,.**,xv+n} contains at least one pseudo-stationary point.

ii) if x, and x are two pseudo-stationary points with J1 < J2 1 then

Q(xj 2 ) > Q(XJI)

-5-
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3) A General Outline of the Algorithm

Let xj be a pseudo-stationary point and assume that

ajxj = bit i =1I....p

Then there are numbers u1j,.°.,upj such that

p
Cx) + ) uija i  -c, uij ) 0

i=i

(3.1)

ajxj bit 1..p

If xj satisfies the inequalities aix ( bi for i = p + 1,...,m, then it follows from

the optimality conditions that xj is an optimal solution. Let k be any integer such

that

a~xj > bk . (3.2)

First we will determine a pseudo-stationary point for which the kth constraint is

satisfied as an equality. There are two cases to be considered depending on whether ak

is linearly dependent on al,...,a p

Case 1: ak + spanta I ... a ).

Then the equations aix = bi, i = 1,...,p, i = k are consistent and the problem

min{Q(x) I aix - bit i = 1,...,p, i = kJ (3.3)

has a unique optimal solution which we denote by yj. Furthermore, there are numbers

vi  such that

p
Cyj + vijaai + vkjak = -c

ajyj =bi, i- 1.... p, (3.4)

a~yj - bk.

% Setting sj = - yJ 1, ukj = 0,

• 6kj = ukj - vkj and i uij - vii, i = 1,... p

we obtain from (3.1) and (3.4) the equalities

;-6-
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p
Cej + 1!. 61 jai k' (3.5)

alsj - 0, 1 1,... 'p (3.6)

*akaj - akxj -bk(37

Furthermore, let

a= min{IP 6U for all £ with 6, > 01 (3.8)
ii i

and set

xj+i i aj - Oilj Uk,j+1 Oki - j~kj' Ui,J+1  UiJ - j
6
jjii =1..s

Then

2

uijasj +2 sCsj

22

= 2 sICsj

* Multiplying (3.5) by sj we obtain

5icsj -6 kja sj

Since sicej > 0 and ajej > 0 we have -6k > 0 and

uk,j+l - ukj - jdkj " ukj~

Thus, if a 1, it follows that xj = xj - ej is a pseudo-stationary point with

* Q(Xj4.j) > Q(xj) and a~xj4.l - bk

if 0 < 1,lta 6J say. Then uxj+l - 0 and a)jxj+j > b.

Replacing xj with xj+l and deleting a x - b from the set of active constraints we

can repeat the above steps to obtain

6j+ - xjl- aj+lsj+1 u)k J+2 ;P 0, ui,J+2 )' 0, 1 1,.. .'p, i 0' 9

if Oj+- 1, then xj+2 is a pseudo-stationary point with

-7-
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Q(xj+2 ) > Q(xj) and a~xj+2  b

If aj+ 1 < 1, then aixj+ 2 > bk  and ut,j+ 2 = 0 for at least one 1 = , # .

Repeating these steps we obtain an x. with 1 ( p 4 n such that x is a

pseudo-stationary point with

Q(xj+p) > Qlxj) and akxj+, = bk  (3.9)

Case 2: ak Ala I + *- + X a

Because a&xj > bk, (3.3) has no feasible solutions. If X • 0 for all

I - 1,...,p, then :he given problem (2.1) has no feasible solutions as will be shown in

the proof of the theorem in the next section. If at least one Xi  is positive, determine

the smallest index V such that

ui = minjL- I for all i with X. > 01 J.10)
V U

and set

u. u.

kj A uij= ij A i i
V V

Replacing (3.1) with

.CX + a uia + ukja -c

Cxj. i i ki

i*v

: ,,: .a l x j = b i , i = I ... .p , i £

and (3.3) with

min{(Q(x) I aix =bi, i- 1,...,p, i =k, i V)

we can proceed as in Case 1 to obtain a pseudo-stationary point x j+p with the properties

(3.9).

The above description of the algorithm indicates that all data required to perform

one iteration can be obtained by solving a system of linear equations of the form (3.5)-

(3.7). Depending on the number of active constraints the dimension of this system varies

from n to 2n. In the following we will show that these data can also be derived from

an appropriate (n,n)-matrix associated with xj.I:
-8-
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Let xj be again a pseudo-stationary point with

alxj = bi, i - 1,•..,p

and define

T j {x I ax - 0, i - i .... P)

Since the gradients of active constraints are assumed to be linearly independent the

subspace Tj has dimension n - p. Let cp+lj,... cnj be a basis of conjugate

directions for T+. By this we mean the following.

i) cp+1,j,...,cnj are linearly independent,

ii) ciJ e Tj, i - p + 1,...,n ,

iii) CjjCkj 0, ipk - p + 1,...,n, i k,

iv) cljCcij 1 1, i - p + 1,...,n

Because C is positive definite it is not difficult to verify that such a basis for Tj

exists.

Now define the (n,n)-matrix D3 as follows

D3 (a, .... ap, Ccp+,j .... Ccnj)

Then Di is non-singular and denoting the columns of D by cj, ... cnj we have

D11 = (cljl .... cpj, cp+1 ,j.. .cnj)

where cp+l,j,...,cnj are the vectors that form a basis of conjugate directions for Tj.

Since alcij I and aickj = 0 for i,k = 1,...,p, i # k, it follows immediately

from (3.1) that

uij - -cJj(C + Cxj), i 1,...'P

Furthermore, ak e span{a1 1... ap} if and only if

I a~cij = 0 for all i - p + 1,....nn

First assume that al,...,aplak are linearly independent and set

T= (x I ajx - 0, i - 1,...,p, i = k}

In Step 2.1 of the algorithm given in the next section it is shown how a basis of

conjugate directions cp+2,j+1,.•,cn,j+l for T can be derived from Cp+1,j , ** Cnj.

Setting

-9-
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weobi D;+1 (a,... ,aptak , CCp+2,j+l,.. ,Ccn,j+1 )

~we obtain

+1= (CI,j+,..**Cp+1,JlI, cp+1,,j+ s**un'j+1)

"where 2+ form a basis of conjugate directions for T

With

. sj - (ax - bkicp+l,j+ 1  (3.11)

it follows from the definition of the inverse matrix that

V
ajsj = 0, i = 1,... ,P and aj= ajxj - bk

Furthermore, cj,j+lCs j = 0, i = p + 2,...,n shows that

Csj e span{a 1, ... ,aP'akl

Therefore, the solution of the equations (3.5)-(3.7) is given by (3.11) and

6. = -Cj,j+lCSj, i = 1,...,p, i - k

Let o be as defined by (3.8) and set xj+ 1 = Xj- 010J .  If a = 1, xj+ 1  is a
pseudo-stationary point. If a < 1, let a = /6 and define

Tj+ 1 = {x I alx = 0, i - 1,...,p, i k k, i 0 i

Then the vectors

c, €c,j+1

L~j+1

cij+2 = ci,j+1' i = p + 2,...,n

form a basis of conjugate directions for Tj+ I. Assuming for simplicity that I = p - 1

we have

D1 . (a, ..... -1 sp_ ,J"'c+,+ ..... CcnJ+2)
. and

DI 2 (c,,j+2'.... ICn,j. )

If ak e span{a,...,ap}, then T. = Tj. With v as defined by (3.10) we have

D1+I (alu...av-l akeav+1 .... apCcp+1,j+#....Cc n,j+,)

and

-10-
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D +1 ' fClj+1 .... cn,j+l) I

where

ci,:+l " cij for i - p + 1,...,n

The matrix D3+ 2  is then determined as in the previous case.

All information needed in an iteration of the algorithm can be derived from the

matrix D The matrix Dj is only used to illustrate the definition of D 1 . In order

" to differentiate the columns of 0- which form a basis for T from those which

correspond to gradients of active constraints we associate with Dj an index set

(Jxj) -

For each i, e (0,1,...,m) and a - 0 if and only if cij e Tj, Furthermore,

a k > 0 if and only if ak is in the ith column of D .
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4) Detailed Description of the Algorithm

As initial data, the algorithm requires a pseudo-stationary point (x0 ,u0 ) and the

associated matrix D = (c10 .,CnO) and index set J(x0 ) - {0,0...,an} as defined

in the previous section. There are two important cases in which these data are easily

available. First, if C is a diagonal matrix, then xO can be the unconstrained

minimizer of Q(x). All columns of D0
1 are conjugate directions. Second, x0 , uO, Du

I ,

- I. and J(x0 ) could be obtained by applying the algorithm given in El] to the original

problem which then was augmented by additional constraints not satisfied by x0o.

A general iteration of the algorithm is as follows.

Step 1

Determine the smallest k such that

ajxj - bk - max(alx1 - bi I i- I ..... 

If ajxj - bk 4 0, stop with the optimal solution xj; otherwise go to Step 2.1.

Step 2.1

If Oij > 0 for all i - 1,...,n, go to Step 2.21 otherwise compute

" z = aicij for all i with oil = 0

Determine the smallest v such that

1z V1 -max{iziI for all i with aij" 0}

If zv = 0, set

ci,j+- cij for all i with aiJ - 0

and go to Step 2.2. If zu  0, set z' - (z1 , ...,zn) with zi = 0 for all i with

a- > 0, 6 - I if z 0 and 6 - -1 if z > 0. Compute

61zle - z
I6Iz"e - (w11 .,wn)'W - 161zle - zl ''*". ln)

where e is the v-th unit vector. Set

y D 
1
W

and

-12-
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ci,j+ I  cij - 2wiy

for all i with a J 0. Set cvj I c,,+ I and go to Step 2.3.

Step 2.2

Compute

At - akci for all i with aiJ > 0

If A ( 0 for all i, stop with the message that problem (2.1) has no feasible
i

solutiont otherwise determine the smallest v such that

uu

21 -min{ I for all i with aij > 0 and X, 
> 

Of
x 

i
Set cvj - cvj, replace

u with -

and

uij with uij A i

for all i #d v with a.j > 0. Go to Step 2.3.

Step 2.3

Compute

c
c Aa~cvj

and

ci,j+1 " ci1 - (aicij)cv,j+I

for all i # v with aj > 0. Set

J+1 (c+j+I,....cj i), J(xj+1) {a11,j+1 ... ,j+1}

where a k and a a for all i v. Go to Step 3.

vj+1 ij+1 ij

-13-
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Step 3

Compute

s (axi - bk)cVJ+
1

and

i -c1,j+ 1 Csj for all i with ilj > 0

If 6j 4 0 for all i, set ; -1 otherwise determine the smallest I such that
.I

* U
I 6 0 I for all i with aij 

> 
0 and 6ij > 01

LiJ ij

Set

a min{1,o}, x -x - osJ
1 1 1j+1 i i

ui,j+ = uij for all i with GLJ " 0

.Z' Ulij+1 Ujj - a i 6ij for all i with aij > 0

Replace j with j + 1. If a- = 1, go to Step 1. If aj I < 1, go to Step 4.

Step 4

Compute

= C c

ci,j+= cij - (Ci,j + ,Cc1 j)cl,j+1 for all i it t with aGi > 0

ci,j+= cij for all i with a, 0

Set

"=P+1l (Cl,j+ 1 ... cn, J+I)' J(xJ+l) = (" 1  . an

where a 1+1 = 0 and a = G j for all i # 1. Replace j with j + I and go to

step 3.

The following lemma establishes the properties of the matrices D3 and D which

guarantee the finite termination of the algorithm.

-14-
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Define the set I such that j e I if and only if the algorithm uses Step I at

the J-th iteration. Let

D = (Clj,...,cnj), J(xj) = {aj, .... anj} xj, and uj

be as defined by the algorithm and denote the columns of Di by dlj,...,dj. Then, for

every j e I, we have the following properties

i) di4 - Cci4 for all i with a = 0

ii) dij - a(ij  for all i with ail > 0

iii) ajaxj xJ - b0L j for all i with Ci j > 0

iv) -(c + Cxj) = Diu with uij - 0 for all i with ai 0 and uii ;0 0

for all i with ai > 0.ii
Proof:

For j - 0 the statements of the lemma follow from the definition of D-1 and

J(x 0 ). Let J e I and assume that i)-iv) are true. First we consider the case that

Qj- 0 for at least one i and that z V, as defined in Step 2.1, is different from

zero. Let w be as defined in Step 2.1 of the algorithm and set

H - I - 2Ww'

Then H is a Householder-matrix with the property (see e.g. (3])

Hz 61zle • (4.1)

Furthermore, lot

D- H -Cc 11 ... ,c
j jj

Then

By definition,

c cij 2w - - 2wiY, i =1,...,n.

Since wi zi = 0 for all i with aij > 0, we have

c cij for all I with aiJ > 0

and

-15-
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Cjj ci,j+ I  for all i with aj 0

where the vectors cii.+ are as defined by Step 2.1 of the algorithm. Similarly,

diji -dij a ij  for all i with a j > 0

and

d"' d - 2wiw for all i with aJ 0dfi~ dii 2wiD0 •i

Since dij - Ccij for all i with a = 0 and wi = 0 for all i with ai > 0, it

follows that, for all i with a = 0,
ij

dij - Ccij - 2wiCD iw

= Ccij - 2wiCY

- C(Cij -
2wiy)

-Ccij

This shows that D., xj, and uj = uj have the properties i)-iv). Furthermore let

ak = ak + ak, where ak e span{dij all i with mij > 0) and ae span{dij I all

i with a = 01. Thenii

kz' and kac 1 = 0 for all i with Qi 0

* Therefore, it follows from (4.1) that

a'D a'H =z'H - 6izie'

which implies that

0Ofor all i v with ai =0
-kij - 6z1 for i = V

If V is determined by Step 2.2, we set D = D 1 . in either case we haveI

.ac =0 for all i 0 V with a =0 .(4.2)

Let D3+I be obtained from n; by replacing the v-th column with ak. Then it follows

Sfrom (4.2) that the columns cij+; ofD , are as defined in Step 2.1 and 2.2 of the

algorithm. If we set u = uj when v is determined by Step 2.1 and equal to the vector
defined in Step 2.2 otherwise, it is easy to verify that Dj+I, D I1 'j and

+1' X , and

J(xJ1 ) have properties i)-iv) with the exception that

a' x )
Sv,j+lx j > baVj+1

-16-
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Now let oil xj+a , and uj+ I be as determined by Stop 3. Then j + I e I if and

only if o = 1 in which case a VJ+lXJ1  = bcv,j+1,  i.e. properties i)-iv) hold. If

a < 1, let DJ+ 2 be the matrix obtained from D5+1 by replacing the L-th column

with c ,+//cI Cc,j+ . Since c , +lCci,i+ 1 for all i with Q = 0, the

columns Of are as determined by Step 4. Furthermore, the X-th component of

uj+l is zero. Thus it follows again that Dj+ 21 +2, J~xj+ 2), x 1 1  and u-I1  have

properties i)-iv) with the exception that

cv,j+2x,+1 >a,j+2

This completes the proof of the lemma.

The main properties of the algorithm are summarized in the following theorem.

Theorem

Let x0 ,x1 .... be the vectors determined by the algorithm.

i) For every j the set

, .' {XjpXJ+I ..... Xj n
J+n

contains at least one pseudo-stationary point.

ii) If xjl and xJ2  are two pseudo-stationary points with J1 < J2, then

Q(xJ2) > Q(X~l)•

iii) The algorithm terminates after a finite number of iterations with either an optimal

solution or the information that the given problem has no feasible solutions.

Proof:

i) Let the set I be as defined in the lemma. Then it follows that, for every J e I,
." is a pseudo-stationary point. At every iteration j with j # I, the number

of positive elements in the set J(xj) decreases by 1. Hence, there are at most

n consecutive iterations such that j I.

ii) with s (akxj - bk)cvi+l and - -cjIjiCsj we have

CsJ - ija i,j+1  (4.3)

- where the summation is over all I such that a > 0. Multiplying (4.3) by

s4 we obtain

-17-
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a-sCj- -jas, -d (a'xj - bk)•s!Csj -6 vj als j  -6vj k jj

Thus 6 j ( 0 and u Vj+- uvj - 6vj ) 0. Furthermore,

O, 02

Q(x - os) - Q(xj) - -Cc + cx.)s + - s'cei

2

Ij ij ai,j+1 s +j8 - Cs. Qi'j+1

2

-au a's + - stCsj

> 0 for a > 0

iii) If the algorithm terminates with xj in Step 1, then xj e R and j e I. Thus if

follows from the lemma that xj is a pseudo-stationary point. Because xj e R the

optimality conditions are satisfied and xj is indeed an optimal solution. Suppose

the algorithm terminates with Step 2.2. Then

ak = I xiamij  with X ( 0
aLij>0

b

Let x be such that a'jx .bi j  for all i with al > 0. Set S xj -x.

Then a' s > 0 for all i with ai > 0. Thus
.ij

ajx - ak(xj - s) - axj- ) ia s ; aixj > b
aij>0

This shows that R - $. Since there are only finitely many pseudo-stationary

points, it follows from part ii) of the theorem that the algorithm terminates after

a finite number of iterations.

',
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